Timeline of gravitational physics and relativity
Appearance
General relativity |
---|
The following is a timeline of gravitational physics and general relativity.
Before 1500
[edit]- 3rd century B.C. – Aristarchus of Samos proposes the heliocentric model.[1]
1500s
[edit]- 1543 – Nicolaus Copernicus publishes On the Revolutions of Heavenly Spheres.[1]
- 1583 – Galileo Galilei deduces the period relationship of a pendulum from observations (according to later biographer).
- 1586 – Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped.[2]
- 1589 – Galileo Galilei describes a hydrostatic balance for measuring specific gravity.
- 1590 – Galileo Galilei formulates modified Aristotelean theory of motion (later retracted) based on density rather than weight of objects.
1600s
[edit]- 1602-1608 – Galileo Galilei experiments with pendulum motion and inclined planes; deduces his law of free fall; and discovers that projectiles travel along parabolic trajectories.[3]
- 1609 – Johannes Kepler announces his first two laws of planetary motion.[4]
- 1610 – Johannes Kepler states the dark night paradox.[5]
- 1610 – Galileo Galilei publishes The Sidereal Messenger, detailing his astronomical discoveries made with a telescope.[6]
- 1619 – Johannes Kepler unveils his third law of planetary motion.[4]
- 1665-66 – Isaac Newton introduces an inverse-square law of universal gravitation uniting terrestrial and celestial theories of motion and uses it to predict the orbit of the Moon and the parabolic arc of projectiles (the latter using his generalization of the binomial theorem).[7]
- 1676-9 – Ole Rømer makes the first scientific determination of the speed of light.[8]
- 1684 – Isaac Newton proves that planets moving under an inverse-square force law will obey Kepler's laws in a letter to Edmond Halley.[7]
- 1686 – Isaac Newton uses a fixed length pendulum with weights of varying composition to test the weak equivalence principle to 1 part in 1000.[9][10]
- 1686 – Isaac Newton publishes his Mathematical Principles of Natural Philosophy, where he develops his calculus, states his laws of motion and gravitation, proves the shell theorem, describes his rotating bucket thought experiment, explains the tides, and calculates the figure of the Earth.[9]
1700s
[edit]- 1705 – Edmond Halley predicts the return of Halley's comet in 1758,[11] the first use of Newton's laws by someone other than Newton himself.[12]
- 1728 – Isaac Newton posthumously publishes his cannonball thought experiment.[13][14]
- 1742 – Colin Maclaurin studies a self-gravitating uniform liquid drop at equilibrium, the Maclaurin spheroid.[15][16]
- 1755 – Immanuel Kant advances Emanuel Swedenborg's nebular hypothesis on the origin of the Solar System.[17]
- 1765 – Leonhard Euler discovers the first three Lagrange points.[18][19]
- 1767 – Leonhard Euler solves Euler's restricted three-body problem.[20]
- 1772 – Joseph-Louis Lagrange discovers the two remaining Lagrange points.[21]
- 1796 – Pierre-Simon de Laplace independently introduces the nebular hypothesis.[17]
- 1798 – Henry Cavendish tests Newton's law of universal gravitation using a torsion balance, leading to the first accurate value for the gravitational constant and the mean density of the Earth.[22][23]
1800s
[edit]- 1846 – Urbain Le Verrier and John Couch Adams, studying Uranus' orbit, independently prove that another, farther planet must exist. Neptune was found at the predicted moment and position.
- 1855 – Le Verrier observes a 35 arcsecond per century excess precession of Mercury's orbit and attributes it to another planet, inside Mercury's orbit. The planet was never found. See Vulcan.
- 1876 – William Kingdon Clifford suggests that the motion of matter may be due to changes in the geometry of space.[24]
- 1882 – Simon Newcomb observes a 43 arcsecond per century excess precession of Mercury's orbit.
- 1884 – William Thomson (Lord Kelvin) lectures on the issues with the wave theory of light with regards to the luminiferous ether.[25]
- 1887 – Albert A. Michelson and Edward W. Morley in their famous experiment do not detect the ether drift.[26][27]
- 1889 – Loránd Eötvös uses a torsion balance to test the weak equivalence principle to 1 part in one billion.[28]
- 1887 – George Francis FitzGerald explains his hypothesis that the Michelson-Morley interferometer contracts in the direction of motion through the luminiferous ether to Oliver Lodge.[25]
- 1893 – Ernst Mach states Mach's principle, the first constructive critique of the idea of Newtonian absolute space.
- 1897 – Henri Poincaré questions whether absolute space, absolute time, and Euclidean geometry are applicable to physics.[29]
1900s
[edit]- 1902 – Paul Gerber explains the movement of the perihelion of Mercury using finite speed of gravity.[30] His formula, at least approximately, matches the later model from Einstein's general relativity, but Gerber's theory was incorrect.
- 1902 – Henri Poincaré questions the concept of simultaneity in his book, Science and Hypothesis.[31][32]
- 1904 – Hendrik Antoon Lorentz publishes the Lorentz transformations,[33] so named by Henri Poincaré.[25]
- 1902 – Henri Poincaré shows that the Lorentz transformations form a mathematical group, called the Lorentz group, and derives the relativistic formula for adding velocities.[25]
- 1905 – Albert Einstein completes his special theory of relativity[34][35] and examines relativistic aberration and the transverse Doppler effect.[25]
- 1905 – Albert Einstein discovers the equivalence of mass and energy,[36] in modern form.[37][38][31]
- 1906 – Max Planck coins the term Relativtheorie. Albert Einstein later uses the term Relativitätstheorie in a conversation with Paul Ehrenfest. He originally prefers calling it Invariance Theory.[39]
- 1906 – Max Planck formulates a variational principle for special relativity.[40]
- 1907 – Albert Einstein introduces the principle of equivalence of gravitational and inertial mass and uses it to predict gravitational lensing and gravitational redshift,[41][42] historically known as the Einstein shift.[43]
- 1907-8 – Hermann Minkowski introduces the Minkowski spacetime and the notion of tensors to relativity. His paper was published posthumously.[44][45][46]
- 1909 – Max Born proposes his notion of rigidity.[47][48]
- 1909 – Paul Ehrenfest states the Ehrenfest paradox.[49][50]
1910s
[edit]- 1911 – Max von Laue publishes the first textbook on special relativity.[51]
- 1911 – Albert Einstein explains the need to replace both special relativity and Newton's theory of gravity; he realizes that the principle of equivalence only holds locally, not globally.[52]
- 1912 – Friedrich Kottler applies the notion of tensors to curved spacetime.[53][51]
- 1915-16 – Albert Einstein completes his general theory of relativity.[54][55] He explains the perihelion of Mercury and calculates gravitational lensing correctly and introduces the post-Newtonian approximation.[56][57]
- 1915 – David Hilbert independently introduces the Einstein-Hilbert action.[58][55] Hilbert also recognizes the connection between the Einstein equations and the Gauss-Bonnet theorem.[59]
- 1916 – Karl Schwarzschild publishes the Schwarzschild metric about a month after Einstein published his general theory of relativity.[60][61] This was the first solution to the Einstein field equations other than the trivial flat space solution.[62][63][64]
- 1916 – Albert Einstein predicts gravitational waves.[65]
- 1916 – Willem de Sitter predicts the geodetic effect.[66]
- 1917 – Albert Einstein applies his field equations to the entire Universe.[67] Physical cosmology is born.[42]
- 1916-20 – Arthur Eddington studies the internal constitution of the stars.[68][69]
- 1918 – Albert Einstein derives the quadrupole formula for gravitational radiation.[70][71]
- 1918 – Emmy Noether publishes Noether's theorem and resolves the issue of local energy conservation in general relativity.[72][73]
- 1918 – Josef Lense and Hans Thirring find the gravitomagnetic frame-dragging of gyroscopes in the equations of general relativity.[74][75][76]
- 1919 – Arthur Eddington leads a solar eclipse expedition which detects gravitational deflection of light by the Sun,[77] which, despite opinion to the contrary, survives modern scrutiny.[78] Other teams fail for reasons of war and politics.[79]
1920s
[edit]- 1921 – Theodor Kaluza demonstrates that a five-dimensional version of Einstein's equations unifies gravitation and electromagnetism.[80] This idea is later extended by Oskar Klein.[81]
- 1922 – Alexander Friedmann derives the Friedmann equations.[82][42]
- 1922 – Enrico Fermi introduces the Fermi coordinates.[83][84] This is developed further in 1932 by Arthur Walker into the Fermi-Walker transport.[85]
- 1923 – George David Birkhoff proves Birkhoff's theorem on the uniqueness of the Schwarzschild solution.
- 1924 – Arthur Eddington calculates the Eddington limit.[86]
- 1924 – Cornelius Lanczos discovers the van Stockum dust,[87] later rediscovered by Willem Jacob van Stockum in 1938.[88]
- 1925 – Walter Adams measures the gravitational redshift of the light emitted by the companion of Sirius B, a white dwarf.[89]
- 1927 – Georges Lemaître publishes his hypothesis of the primeval atom.[90][42]
- 1929 – Edwin Hubble published the law later named for him.[91]
1930s
[edit]- 1931 – Subrahmanyan Chandrasekhar studies the stability of white dwarfs.[93][94]
- 1931 – Georges Lemaître and Arthur Eddington predict the expansion of the Universe.[95][96]
- 1931 – Albert Einstein introduces his cosmological constant.[97]
- 1932 – Albert Einstein and Willem de Sitter propose the Einstein-de Sitter cosmological model.[98]
- 1932 – John Cockcroft and Ernest Walton verify Einstein's mass-energy equation by an experiment artificially transmuting lithium into helium.[99][100]
- 1934 – Dmitry Blokhintsev and F. M. Gal'perin coin the term 'graviton'.[101] Paul Dirac reintroduces it in 1959.[102][103]
- 1934 – Walter Baade and Fritz Zwicky predict the existence of neutron stars.[104] Although their details are wrong, their basic idea is now accepted.[105]
- 1935 – Albert Einstein and Nathan Rosen derive the Einstein-Rosen bridge, the first wormhole solution.[106]
- 1935 – Howard Robertson and Arthur Walker obtain the Robertson-Walker metric.[85]
- 1936 – Albert Einstein predicts that a gravitational lens brightens the light coming from a distant object to the observer.[107]
- 1937 – Fritz Zwicky states that galaxies could act as gravitational lenses.[108]
- 1937 – Albert Einstein and Nathan Rosen obtain the Einstein-Rosen metric, the first exact solution describing gravitational waves.[109]
- 1938 – Albert Einstein, Leopold Infeld, and Banesh Hoffmann obtain the Einstein-Infeld-Hoffmann equations of motion.[110]
- 1939 – Hans Bethe shows that nuclear fusion is responsible for energy production inside stars,[111] building upon the Kelvin–Helmholtz mechanism.
- 1939 – Richard Tolman solves the Einstein field equations in the case of a spherical fluid drop.[112][113]
- 1939 – Robert Serber, George Volkoff, Richard Tolman, and J. Robert Oppenheimer study the stability of neutron stars, obtaining the Tolman–Oppenheimer–Volkoff limit.[114][115][113]
- 1939 – J. Robert Oppenheimer and Hartland Snyder publish the Oppenheimer-Snyder model for the continued gravitational contraction of a star.[116][113][117]
1940s
[edit]- 1948 – Ralph Alpher and Robert Herman predict the cosmic microwave background.[118][119]
- 1949 – Cornelius Lanczos introduces the Lanczos potential for the Weyl tensor.[120]
- 1949 – Kurt Gödel discovers Gödel's solution.[121]
1950s
[edit]- 1953 – P. C. Vaidya Newtonian time in general relativity, Nature, 171, p260.
- 1954 – Suraj Gupta sketches how to derive the equations of general relativity from quantum field theory for a massless spin-2 particle (the graviton).[122] His procedure was later carried out by Stanley Deser in 1970.[123][124]
- 1955-56 – Robert Kraichnan shows that under the appropriate assumptions, Einstein's field equations of gravitation arise from the quantum field theory of a massless spin-2 particle coupled to the stress-energy tensor.[125][126] This follows from his unpublished work as an undergraduate in 1947.[124]
- 1956 – Bruno Berlotti develops the post-Minkowskian expansion.[127]
- 1956 – John Lighton Synge publishes the first relativity text emphasizing spacetime diagrams and geometrical methods.
- 1957 – Felix A. E. Pirani uses Petrov classification to understand gravitational radiation.
- 1957 – Richard Feynman introduces his sticky bead argument.[124][128] He later derives the quadrupole formula in a letter to Victor Weisskopf (1961).[124]
- 1957-8 – John Wheeler discusses the breakdown of classical general relativity near singularities and the need for quantum gravity.[42]
- 1958 – David Finkelstein presents a new coordinate system that eliminates the Schwarzschild radius as a singularity.[129]
- 1959 – Robert Pound and Glen Rebka propose the Pound–Rebka experiment, first precision test of gravitational redshift. The experiment relies on the Mössbauer effect.[130]
- 1959 – Lluís Bel introduces Bel–Robinson tensor and the Bel decomposition of the Riemann tensor.
- 1959 – Arthur Komar introduces the Komar mass.
- 1959 – Richard Arnowitt, Stanley Deser and Charles W. Misner developed ADM formalism.
1960s
[edit]- 1960 – Martin Kruskal and George Szekeres independently introduce the Kruskal–Szekeres coordinates for the Schwarzschild vacuum.[131][132]
- 1960 – John Graves and Dieter Brill study the causal structure of an electrically charged black hole.[133]
- 1960 – Thomas Matthews and Allan R. Sandage associate 3C 48 with a point-like optical image, show radio source can be at most 15 light minutes in diameter,
- 1960 – Ivor M. Robinson and Andrzej Trautman discover the Robinson-Trautman null dust solution[134]
- 1960 – Robert Pound and Glen Rebka test the gravitational redshift predicted by the equivalence principle to approximately 1%.[135]
- 1961 –Tullio Regge introduces the Regge calculus.[136]
- 1961 – Carl H. Brans and Robert H. Dicke introduce Brans–Dicke theory, the first viable alternative theory with a clear physical motivation.[137]
- 1961 – Pascual Jordan and Jürgen Ehlers develop the kinematic decomposition of a timelike congruence,
- 1961 – Robert Dicke, Peter Roll, and R. Krotkov refine the Eötvös experiment to an accuracy of 10−11.[138][139]
- 1962 – John Wheeler and Robert Fuller show that the Einstein-Rosen bridge is unstable.[140]
- 1962 – Roger Penrose and Ezra T. Newman introduce the Newman–Penrose formalism.
- 1962 – Ehlers and Wolfgang Kundt classify the symmetries of Pp-wave spacetimes.
- 1962 –Joshua Goldberg and Rainer K. Sachs prove the Goldberg–Sachs theorem.[141]
- 1962 – Ehlers introduces Ehlers transformations, a new solution generating method,
- 1962 – Richard Arnowitt, Stanley Deser, and Charles W. Misner introduce the ADM reformulation and global hyperbolicity,
- 1962 – Istvan Ozsvath and Englbert Schücking rediscover the circularly polarized monochromomatic gravitational wave.
- 1962 – Hans Adolph Buchdahl discovers Buchdahl's theorem.
- 1962 – Hermann Bondi introduces Bondi mass.
- 1962 – Hermann Bondi, M. G. van der Burg, A. W. Metzner, and Rainer K. Sachs introduce the asymptotic symmetry group of asymptotically flat, Lorentzian spacetimes at null (i.e., light-like) infinity.
- 1963 – Roy Kerr discovers the Kerr vacuum solution of Einstein's field equations,[142]
- 1963 – Redshifts of 3C 273 and other quasars show they are very distant; hence very luminous,
- 1963 – Newman, T. Unti and L.A. Tamburino introduce the NUT vacuum solution,
- 1963 – Roger Penrose introduces Penrose diagrams and Penrose limits.[143]
- 1963 – Maarten Schmidt and Jesse Greenstein discover quasi-stellar objects, later shown to be moving away from Earth due to the expansion of the Universe.[42]
- 1963 – First Texas Symposium on Relativistic Astrophysics held in Dallas, 16–18 December.[42]
- 1964 – Steven Weinberg shows that a quantum field theory of interacting massless spin-2 particles is Lorentz invariant only if it satisfies the principle of equivalence.[144][145][124]
- 1964 – Subrahmanyan Chandrasekhar determines a stability criterion.[146]
- 1964 – R. W. Sharp and Charles Misner introduce the Misner–Sharp mass.
- 1964 – Hong-Yee Chiu coins the term "'quasar" for quasi-stellar radio sources.[147]
- 1964 – Sjur Refsdal suggests that the Hubble constant could be determined using gravitational lensing.[148]
- 1964 – Irwin Shapiro predicts a gravitational time delay of radiation travel as a test of general relativity.[149][150]
- 1965 – Roger Penrose proves the first singularity theorem.[151][42]
- 1965 – Penrose discovers the structure of the light cones in gravitational plane wave spacetimes.
- 1965 – Ezra Newman and others introduce Kerr-Newman metric.[152][153]
- 1965 – Arno Penzias and Robert Wilson accidentally discover the cosmic microwave background radiation.[154] This rules out the steady-state model of Fred Hoyle and Jayant Narlikar.[42]
- 1965 – Joseph Weber puts the first Weber bar gravitational wave detector into operation.
- 1966 – Sachs and Ronald Kantowski discover the Kantowski-Sachs dust solution.
- 1967 – John Archibald Wheeler popularizes "black hole" at a conference.[113][155]
- 1967 – Jocelyn Bell and Antony Hewish discover pulsars.[156]
- 1967 – Robert H. Boyer and R. W. Lindquist introduce Boyer–Lindquist coordinates for the Kerr vacuum.
- 1967 – Bryce DeWitt publishes on canonical quantum gravity.[157]
- 1967 – Werner Israel proves a special case of the no-hair theorem and the converse of Birkhoff's theorem.[158]
- 1967 – Kenneth Nordtvedt develops PPN formalism.
- 1967 – Mendel Sachs publishes factorization of Einstein's field equations.
- 1967 – Hans Stephani discovers the Stephani dust solution.
- 1968 – F. J. Ernst discovers the Ernst equation.
- 1968 – B. Kent Harrison discovers the Harrison transformation, a solution-generating method.
- 1968 – Brandon Carter solves the geodesic equations for Kerr–Newmann electrovacuum with Carter's constant.[159]
- 1968 – Hugo D. Wahlquist discovers the Wahlquist fluid.
- 1968 – James Hartle and Kip Thorne obtain the Hartle–Thorne metric.[160]
- 1968 – Irwin Shapiro and his colleagues present the first detection of the Shapiro delay.[161]
- 1968 – Kenneth Nordtvedt studies a possible violation of the weak equivalence principle for self-gravitating bodies and proposes a new test of the weak equivalence principle based on observing the relative motion of the Earth and Moon in the Sun's gravitational field.[162]
- 1969 – William B. Bonnor introduces the Bonnor beam.[163]
- 1969 – Joseph Weber reports observation of gravitational waves[164] a claim now generally discounted.[165][166]
- 1969 – Penrose proposes the (weak) cosmic censorship hypothesis and the Penrose process,[167]
- 1969 – Misner introduces the mixmaster universe.
- 1969 – Yvonne Choquet-Bruhat and Robert Geroch discuss global aspects of the Cauchy problem in general relativity.[168]
- 1965-70 – Subrahmanyan Chandrasekhar and colleagues develops the post-Newtonian expansions.[169][170][171][172][173]
- 1968-70 – Roger Penrose, Stephen Hawking, and George Ellis prove that singularities must arise in the Big Bang models.[174][175]
1970s
[edit]- 1970 – Vladimir Alekseevich Belinski, Isaak Markovich Khalatnikov, and Evgeny Lifshitz introduce the BKL conjecture.
- 1970 – Stephen Hawking and Roger Penrose prove trapped surfaces must arise in black holes.
- 1971 – David Scott demonstrates that a hammer and a feather fall at the same rate on the Moon.[3]
- 1971 – Alfred Goldhaber and Michael Nieto give stringent limits on the photon mass.[176] The strictest one is .[177]
- 1971 – Stephen Hawking proves that the area of a black hole can never decrease.[178][42]
- 1971 – Peter C. Aichelburg and Roman U. Sexl introduce the Aichelburg–Sexl ultraboost.
- 1971 – Introduction of the Khan–Penrose vacuum, a simple explicit colliding plane wave spacetime.
- 1971 – Robert H. Gowdy introduces the Gowdy vacuum solutions (cosmological models containing circulating gravitational waves).
- 1971 – Cygnus X-1, the first solid black hole candidate, discovered by Uhuru satellite.[42]
- 1971 – William H. Press discovers black hole ringing by numerical simulation.
- 1971 – Harrison and Estabrook algorithm for solving systems of PDEs.
- 1971 – James W. York introduces conformal method generating initial data for ADM initial value formulation.
- 1971 – Robert Geroch introduces Geroch group and a solution generating method.
- 1972 – Jacob Bekenstein proposes that black holes have a non-decreasing entropy which can be identified with the area.[179][42]
- 1972 – Sachs introduces optical scalars and proves peeling theorem.
- 1972 – Rainer Weiss proposes concept of interferometric gravitational wave detector in an unpublished manuscript.[180]
- 1972 – Joseph Hafele and Richard Keating perform the Hafele–Keating experiment.[181][182][183]
- 1972 – Richard H. Price studies gravitational collapse with numerical simulations.
- 1972 – Saul Teukolsky derives the Teukolsky equation.[184]
- 1972 – Yakov B. Zel'dovich predicts the transmutation of electromagnetic and gravitational radiation.
- 1972 – Brandon Carter, Stephen Hawking, and James M. Bardeen propose the four laws of black hole mechanics.[185][42]
- 1972 – James Bardeen calculates the shadow of a black hole.[186] This was later verified by the Event Horizon Telescope.[187]
- 1973 – Charles W. Misner, Kip S. Thorne and John A. Wheeler publish the treatise Gravitation, a textbook that remains in use in the twenty-first century.[188][189]
- 1973 – Stephen W. Hawking and George Ellis publish the monograph The Large Scale Structure of Space-Time.[42]
- 1973 – Robert Geroch introduces the GHP formalism.
- 1973 – Homer Ellis obtains the Ellis drainhole,[190] the first traversable wormhole.
- 1974 – Russell Hulse and Joseph Hooton Taylor, Jr. discover the Hulse–Taylor binary pulsar,
- 1974 – James W. York and Niall Ó Murchadha present the analysis of the initial value formulation and examine the stability of its solutions.
- 1974 – R. O. Hansen introduces Hansen–Geroch multipole moments.
- 1974 – Stephen Hawking discovers Hawking radiation.[191][192]
- 1975 – Stephen Hawking shows that the area of a black hole is proportional to its entropy, as previously conjectured by Jacob Bekenstein.[193]
- 1975 – Roberto Colella, Albert Overhauser, and Samuel Werner observe the quantum-mechanical phase shift of neutrons due to gravity.[194] Neutron interferometry was later used to test the principle of equivalence.[195][196][197]
- 1975 – Chandrasekhar and Steven Detweiler compute the effects of perturbations on a Schwarzschild black hole.[198]
- 1975 – Szekeres and D. A. Szafron discover the Szekeres–Szafron dust solutions.
- 1976 – Penrose introduces Penrose limits (every null geodesic in a Lorentzian spacetime behaves like a plane wave),
- 1978 – Penrose introduces the notion of a thunderbolt,
- 1978 – Belinskiǐ and Zakharov show how to solve Einstein's field equations using the inverse scattering transform; the first gravitational solitons,
- 1979 – Dennis Walsh, Robert Carswell, and Ray Weymann discover the gravitationally lensed quasar Q0957+561.[199]
- 1979 – Jean-Pierre Luminet creates an image of a black hole with an accretion disk using computer simulation.[200][201]
- 1979 – Steven Detweiler proposes using pulsar timing arrays to detect gravitational waves.[202]
- 1979-81 – Richard Schoen and Shing-Tung Yau prove the positive mass theorem.[203][204] Edward Witten independently proves the same thing.[205]
1980s
[edit]- 1980 – Vera Rubin and colleagues study the rotational properties of UGC 2885, demonstrating the prevalence of dark matter.[206][207]
- 1980 – Gravity Probe A verifies gravitational redshift to approximately 0.007% using a space-born hydrogen maser.[208]
- 1980 – James Bardeen explains structure in the Universe using cosmological perturbation theory.[209]
- 1981 – Alan Guth proposes cosmic inflation in order to solve the flatness and horizon problems.[210]
- 1982 – Joseph Taylor and Joel Weisberg show that the rate of energy loss from the binary pulsar PSR B1913+16 agrees with that predicted by the general relativistic quadrupole formula to within 5%.[211]
- 1983 – James Hartle and Stephen Hawking propose the no-boundary wave function for the Universe.[212][42]
- 1983-84 – RELIKT-1 observes the cosmic microwave background.
- 1986 – Helmut Friedrich proves that the de Sitter spacetime is stable.[213][214]
- 1986 – Bernard Schutz shows that cosmic distances can be determined using sources of gravitational waves without references to the cosmic distance ladder.[215] Standard-siren astronomy is born.
- 1988 – Mike Morris, Kip Thorne, and Yurtsever Ulvi obtain the Morris-Thorne wormhole.[216] Morris and Thorne argue for its pedagogical value.[217]
- 1989 – Steven Weinberg discusses the cosmological constant problem, the discrepancy between the measured value and those predicted by modern theories of elementary particles.[218]
- 1989-93 – The Cosmic Background Explorer (COBE) identifies anisotropy in the cosmic microwave background.[219][220]
1990s
[edit]- 1992 – Stephen Hawking states his chronology protection conjecture.[221]
- 1993 – Demetrios Christodoulou and Sergiu Klainerman prove the non-linear stability of the Minkowski spacetime.[222][214]
- 1995 – John F. Donoghue show that general relativity is a quantum effective field theory.[223] This framework could be used to analyze binary systems observed by gravitational-wave observatories.[224]
- 1995 – Hubble Deep Field image taken.[225] It is a landmark in the study of cosmology.
- 1998 – The first complete Einstein ring, B1938+666, discovered using the Hubble Space Telescope and MERLIN.[226][227]
- 1998-99 – Scientists discover that the expansion of the Universe is accelerating.[228][229]
- 1999 – Alessandra Buonanno and Thibault Damour introduce the effective one-body formalism.[230] This was later used to analyze data collected by gravitational-wave observatories.[231]
2000s
[edit]- 2003 – Arvind Borde, Alan Guth, and Alexander Vilenkin prove the Borde–Guth–Vilenkin theorem.[232][233]
- 2002 – First data collection of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
- 2002 – James Williams, Slava Turyshev, and Dale Boggs conduct stringent lunar test of violations of the principle of equivalence.[234]
- 2005 – Daniel Holz and Scott Hughes coin the term "standard sirens".[235]
- 2009 – Gravity Probe B experiment verifies the geodetic effect to 0.5%.[236][237]
2010s
[edit]- 2010 – A team at the U.S. National Institute for Standards and Technology (NIST) verifies relativistic time dilation using optical atomic clocks.[238][239]
- 2011 – Wilkinson Microwave Anisotropy Probe (WMAP) finds no statistically significant deviations from the ΛCDM model of cosmology.[240]
- 2012 – Hubble Ultra-Deep Field image released. It was created using data collected by the Hubble Space Telescope between 2003 and 2004.[241]
- 2013 – NuSTAR and XMM-Newton measure the spin of the supermassive black hole at the center of the galaxy NGC 1365.[242]
- 2015 – Advanced LIGO reports the first direct detections of gravitational waves, GW150914[243] and GW151226,[244] mergers of stellar-mass black holes. Gravitational-wave astronomy is born.[245] No deviations from general relativity were found.[246][247]
- 2017 – LIGO-VIRGO collaboration detects gravitational waves emitted by a neutron-star binary, GW170817.[248] The Fermi Gamma-ray Space Telescope and the International Gamma-ray Astrophysics Laboratory (INTEGRAL) unambiguously detect the corresponding gamma-ray burst.[249][250] LIGO-VIRGO and Fermi constrain the difference between the speed of gravity and the speed of light in vacuum to 10−15.[251] This marks the first time electromagnetic and gravitational waves are detected from a single source,[252][253] and give direct evidence that some (short) gamma-ray bursts are due to colliding neutron stars.[248][249]
- 2017 – Multi-messenger astronomy reveals neutron-star mergers to be responsible for the nucleosynthesis of some heavy elements,[254][255][256][257] such as strontium,[258] via the rapid-neutron capture or r-process.[259]
- 2017 – MICROSCOPE satellite experiment verifies the principle of equivalence to 10−15 in terms of the Eötvös ratio .[260] The final report is published in 2022.[261][262]
- 2017 – Principle of equivalence tested to 10−9 for atoms in a coherent state of superposition.[263]
- 2017 – Scientists begin using gravitational-wave sources as "standard sirens" to measure the Hubble constant, finding its value to be broadly in line with the best estimates of the time.[264][265] Refinements of this technique will help resolve discrepancies between the different methods of measurements.[266]
- 2017 – Neutron Star Interior Composition Explorer (NICER) arrives on the International Space Station.[156]
- 2017-18 – Georgios Moschidis proves the instability of the anti-de Sitter spacetime.[214]
- 2018 – Final paper by the Planck satellite collaboration.[267] Planck operated between 2009 and 2013.
- 2018 – Mihalis Dafermos and Jonathan Luk disprove the strong cosmic censorship hypothesis for the Cauchy horizon of an uncharged, rotating black hole.[268]
- 2018 – European Southern Observatory (ESO) observes gravitational redshift of radiation emitted by matter orbiting Sagittarius A*, the central supermassive black hole of the Milky Way,[269] and verifies the innermost stable circular orbit for that object.[270]
- 2018 – Advanced LIGO-VIRGO collaboration constrains equations of state for a neutron star using GW170817.[271][272]
- 2018 – Luciano Rezzolla, Elias R. Most, and Lukas R. Weih used gravitational-wave data from GW170817 constrain the possible maximum mass for a neutron star to around 2.17 solar masses.[273]
- 2018 – Kris Pardo, Maya Fishbach, Daniel Holz, and David Spergel limit the number of spacetime dimensions through which gravitational waves can propagate to 3 + 1, in line with general relativity and ruling out models that allow for "leakage" to higher dimensions of space.[274][275] Analyses of GW170817 have also ruled out many other alternatives to general relativity,[276][277][278][279] and proposals for dark energy.[280][281][282][283][284]
- 2018 – Two different experimental teams report highly precise values of Newton's gravitational constant that slightly disagree.[285][286][287]
- 2019 – Event Horizon Telescope (EHT) releases an image of supermassive black hole M87*, and measures its mass and shadow.[288][289] Results are confirmed in 2024.[290]
- 2019 – Advanced LIGO and VIRGO detect GW190814, the collision of a 26-solar-mass black hole and a 2.6-solar-mass object, either an extremely heavy neutron star or a very light black hole.[291][292] This is the largest mass gap seen in a gravitational-wave source to-date.
2020s
[edit]- 2020 – Principle of equivalence tested for individual atoms using atomic interferometry to ~10−12.[293][294]
- 2020 – ESO observes Schwarzschild precession of the star S2 about Sagittarius A*.[295]
- 2021 – Jun Ye and his team measure gravitational redshift with an accuracy of 7.6 × 10−21 using an ultracold cloud of 100,000 strontium atoms in an optical lattice.[296][297]
- 2021 – EHT measures the polarization of the ring of M87*,[298] and other properties of the magnetic field in its vicinity.[299]
- 2021 – EHT releases an image of Sagittarius A*,[300][301] measures its shadow,[302] and shows that it is accurately described by the Kerr metric.[303][304]
- 2022 – Chris Overstreet and his team observe the gravitational Aharonov-Bohm effect[305][306][307] using an experimental design from 2012.[308][309]
- 2022 – James Webb Space Telescope (JWST) publishes its first image, a deep-field photograph of the SMACS 0723 galaxy cluster.[310]
- 2022 – Neil Gehrels Swift Observatory detects GRB 221009A, the brightest gamma-ray burst recorded.[311][312][313]
- 2022 – JWST identifies several candidate high-redshift objects, corresponding to just a few hundred million years after the Big Bang.[314][315]
- 2023 – James Nightingale and colleagues detect Abell 1201, an ultramassive black hole (33 billion solar masses), using strong gravitational lensing.[316]
- 2023 – Matteo Bachetti and colleagues confirm that neutron star M82 X-2 is violating the Eddington limit, making it an ultraluminous X-ray source (ULX).[317][318]
- 2023 – Team led by Dong Sheng and Zheng-Tian Lu found a null result for the coupling between quantum spin and gravity to 10−9.[319][320]
- 2023 – The North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the European Pulsar Timing Array (EPTA), the Parkes Pulsar Timing Array (Australia), and the Chinese Pulsar Timing Array report detection of a gravitational-wave background.[321][322][323][324][325]
- 2023 – Geraint F. Lewis and Brendon Brewer present evidence of cosmological time dilation in quasars.[326][327]
- 2024 – The Large High Altitude Air Shower Observatory (LHAASO) collaboration imposes stringent limits on violations of Lorentz invariance proposed in certain theories of quantum gravity using GRB 221009A.[328][329]
See also
[edit]- Timeline of black hole physics
- Timeline of special relativity and the speed of light
- List of contributors to general relativity
- List of scientific publications by Albert Einstein
References
[edit]- ^ a b Bauer, Susan Wise (2015). "Chapter Seven: The Last Ancient Astronomer". The Story of Science from the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN 978-0-393-24326-0.
- ^ Gribbin, John (2003). "Chapter 3: The First Scientists". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 76–7. ISBN 978-1-400-06013-9.
- ^ a b Pasachoff, Naomi; Pasachoff, Jay (2012). "Galileo Galilei". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
- ^ a b Dolnick, Edward (2011). "Timeline". The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World. New York: Harper Collins. ISBN 9780061719516.
- ^ "Olber's Paradox: Why Is The Sky Dark at Night?". American Museum of Natural History. Retrieved June 6, 2024.
- ^ Bauer, Susan Wise (2015). "Chapter Ten: The Death of Aristotle". The Story of Science: From the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN 978-0-393-24326-0.
- ^ a b Iliffe, Rob (2012). "Isaac Newton". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
- ^ Gribbin, John (2002). "4. Science Finds Its Feet". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. New york: Random House. pp. 122–23. ISBN 0-8129-6788-7.
- ^ a b Newton, Isaac (1999). The Principia: The Authoritative Translation and Guide. Translated by Cohen, I. Bernard; Whitman, Anne; Budenz, Julia. University of California Press. ISBN 978-0-520-29088-4.
- ^ Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN 0-07-035048-5.
- ^ Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 – via Internet Archive.
- ^ Sagan, Carl; Druyan, Ann (1997). Comet. New York: Random House. pp. 66–67. ISBN 978-0-3078-0105-0.
- ^ De mundi systemate, Isaac Newton, London: J. Tonson, J. Osborn, & T. Longman, 1728.
- ^ Newton, Isaac; Cohen, I. Bernard (2004-01-01). A Treatise of the System of the World. Courier Corporation. ISBN 978-0-486-43880-1.
- ^ Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
- ^ Chandrasekhar, Subrahmanyan (1969). "5: The Maclaurin Spheroids". Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press. ISBN 978-0-30001-116-6.
- ^ a b Woolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode:1993QJRAS..34....1W. For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
- ^ Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D. (2006). Dynamical Systems, the Three-Body Problem, and Space Mission Design. p. 9. Archived from the original on 2008-05-27. Retrieved 2008-06-09. (16MB)
- ^ Euler, Leonhard (1765). De motu rectilineo trium corporum se mutuo attrahentium (PDF).
- ^ Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
- ^ Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps". Œuvres de Lagrange (in French). Gauthier-Villars. pp. 229–334.
- ^ Cavendish, Henry (1798). "Experiments to Determine the Density of Earth". Philosophical Transactions of the Royal Society. 88: 469–526. doi:10.1098/rstl.1798.0022. JSTOR 106988.
- ^ Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics. 55 (3): 210–213. Bibcode:1987AmJPh..55..210C. doi:10.1119/1.15214.
- ^ s:On the Space Theory of Matter
- ^ a b c d e Shankland, Robert Sherwood (1964). "Michelson-Morley Experiment". American Journal of Physics. 32: 16–35. doi:10.1119/1.1970063.
- ^ Michaelson, Albert A.; Morley, Edward W. (1887). "On the Relative Motion of the Earth and the Luminiferous Ether". American Journal of Science. 134 (333): 333–345. Bibcode:1887AmJS...34..333M. doi:10.2475/ajs.s3-34.203.333. S2CID 124333204.
- ^ French, A. P. (1968). "Chapter 2: Perplexities in the Propagation of Light". Special Relativity. New York: W. W. Norton & Company. pp. 52–58. ISBN 0-393-09793-5.
- ^ Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). "One Hundred Years of the Eötvös Experiment". Archived from the original on October 22, 2012.
- ^ Isaacson, Walter (2007). "Chapter Three: The Zurich Polytechnic". Einstein: His Life and Universe. Simon & Schuster. p. 37.
- ^ Gerber, P. (1917) [1902]. "Die Fortpflanzungsgeschwindigkeit der Gravitation". Annalen der Physik. 52 (4): 415–444. Bibcode:1917AnP...357..415G. doi:10.1002/andp.19173570404. (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
- ^ a b Robinson, Andrew (2012). "Albert Einstein". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
- ^ Galison, Peter (2014). "Einstein and Poincaré". In Brockman, John (ed.). The Universe. New York: HarperCollins. ISBN 978-0-06-229608-5.
- ^ Lorentz, Hendrik Antoon (1904). "Electromagnetic Phenomena in a System Moving with Any Velocity Smaller than That of Light" (PDF). Proceedings of the Royal Netherlands Academy of Arts and Sciences. 6: 809–831.
- ^ Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper" [On the Electrodynamics of Moving Bodies] (PDF). Annalen der Physik. Series 4. 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.
- ^ Isaacson, Walter (2007). "Chapter Six: Special Relativity". Einstein: His Life and Universe. New York: Simon & Schuster. ISBN 978-0-7432-6473-0.
- ^ Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" [Does the Inertia of a Body Depend upon its Energy Content?] (PDF). Annalen der Physik. Series 4. 18 (13): 639–641. Bibcode:1905AnP...323..639E. doi:10.1002/andp.19053231314. S2CID 122309633.
- ^ Einstein, Albert (1935). "Elementary derivation of the equivalence of mass and energy" (PDF). Bulletin of the American Mathematical Society. 41 (4): 223–230. doi:10.1090/S0002-9904-1935-06046-X.
- ^ Hecht, Eugene (2011). "How Einstein Confirmed ". American Journal of Physics. 79: 591–600. doi:10.1119/1.3549223.
- ^ Isaacson, Walter (2007). "Chapter Six: Special Relativity". Einstein: His Life and Universe. Simon & Schuster. p. 132. ISBN 978-0-7432-6473-0.
- ^ Isaacson, Walter (2007). "Chapter Seven: The Happiest Thought". Einstein: His Life and Universe. Simon & Schuster. p. 141. ISBN 978-0-7432-6473-0.
- ^ Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the Relativity Principle and the Conclusions Drawn from It] (PDF). Jahrbuch der Radioaktivität (4): 411–462.
- ^ a b c d e f g h i j k l m n o McEvoy, J. P.; Zarate, Oscar (1995). Introducing Stephen Hawking. Totem Books. ISBN 978-1-874-16625-2.
- ^ Eddington, A. S. (1926). "Einstein Shift and Doppler Shift". Nature. 117 (2933): 86. Bibcode:1926Natur.117...86E. doi:10.1038/117086a0. ISSN 1476-4687. S2CID 4092843.
- ^ Minkowski, Hermann (1915). "Das Relativitätsprinzip". Annalen der Physik. 352 (15): 927–938. Bibcode:1915AnP...352..927M. doi:10.1002/andp.19153521505.
- ^ Corry, Leo (1997). "Hermann Minkowski and the Postulate of Relativity" (PDF). Archive for History of Exact Sciences. 51 (4): 273–314. doi:10.1007/BF00518231. S2CID 27016039.
- ^ Gribbin, John (2004). "11. Let There be Light". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 440–1. ISBN 978-0-812-96788-3.
- ^ Born, Max (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips" [The theory of the rigid electron in the kinematics of the principle of relativity]. Annalen der Physik (in German). 355 (11): 1–56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
- ^ Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift. 10: 814–17.
- ^ Ehrenfest, Paul (1909). "Gleichförmige Rotation starrer Körper und Relativitätstheorie" [Uniform Rotation of Rigid Bodies and Theory of Relativity]. Physikalische Zeitschrift (in German). 10 (918): 918. Bibcode:1909PhyZ...10..918E.
- ^ Weber, T. A. (1997). "A note on rotating coordinates in relativity". American Journal of Physics. 65 (6): 486–7. Bibcode:1997AmJPh..65..486W. doi:10.1119/1.18575.
- ^ a b Janssen, Michel; Renn, Jürgen (November 2015). "History: Einstein Was No Lone Genius". Nature. 527: 298–300. doi:10.1038/527298a.
- ^ Einstein, Albert (1911). "Einfluss der Schwerkraft auf die Ausbreitung des Lichtes" [On the Influence of Gravitation upon the Propagation of Light] (PDF). Annalen der Physik. Series 4 (in German). 35: 898–908. doi:10.1002/andp.19113401005.
- ^ Kottler, Friedrich (1912). "Über die Raumzeitlinien der Minkowski'schen Welt" [On the Spacetime Lines of a Minkowski World]. Wiener Sitzungsberichte 2a (in German). 121: 1659–1759.
- ^ Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
- ^ a b Janssen, Michel; Renn, Jürgen (2015). "Arch and scaffold: How Einstein found his field equations". Physics Today. 68 (11): 30–36. doi:10.1063/PT.3.2979. hdl:11858/00-001M-0000-002A-8ED7-1.
- ^ Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie" [Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode:1915SPAW.......831E.
- ^ Einstein, Albert (1916). "Grundlage der allgemeinen Relativitätstheorie" [The Foundation of the General Theory of Relativity] (PDF). Annalen der Physik. 4 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702.
- ^ Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
- ^ Marsden, Jerrold; Tromba, Anthony (2012). "7.7 Applications to Differential Geometry, Physics, and Forms of Life". Vector Calculus (6th ed.). New York: W. H. Freeman Company. p. 422. ISBN 978-1-4292-1508-4.
- ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie" [On the Gravitational Field of a Point Mass According to Einstein's Theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
- ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
- ^ Levy, Adam (January 11, 2021). "How black holes morphed from theory to reality". Knowable Magazine. doi:10.1146/knowable-010921-1. Retrieved 25 March 2022.
- ^ Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
- ^ Bartusiak, Marcia (2015). "Chapter 3: One Would Then Find Oneself... in a Geometrical Fairyland". Black Hole: How An Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9.
- ^ Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" [Approximate Integration of the Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 688–696. Bibcode:1916SPAW.......688E.
- ^ de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. Bibcode:1916MNRAS..77..155D. doi:10.1093/mnras/77.2.155.
- ^ Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
- ^ The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR 6491
- ^ Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society. 77: 16–35. Bibcode:1916MNRAS..77...16E. doi:10.1093/mnras/77.1.16.
- ^ Einstein, Albert (1918). "Gravitationswellen" [Gravitational Waves]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 154–167.
- ^ Holz, Daniel; Hughes, Scott; Bernard, Schultz (December 2018). "Measuring cosmic distances with standard sirens". Physics Today. 71 (12): 34. Bibcode:2018PhT....71l..34H. doi:10.1063/PT.3.4090. S2CID 125545290.
- ^ Noether, Emmy (1918). "Invariante variationsprobleme" [Invariant Variation Problems]. Nachr. Ges. Wiss. Gottingen (in German) (Math.-Phys. Kl 235).
- ^ Byers, Nina (1998). "E. Noether's discovery of the deep connection between symmetries and conservation laws". Proceedings of a Symposium on the Heritage of Emmy Noether. Bar-Ilan University.
- ^ Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
- ^ Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
- ^ Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
- ^ Dyson, F.W.; Eddington, A.S.; Davidson, C.R. (1920). "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919". Philosophical Transactions of the Royal Society A. 220 (571–581): 291–333. Bibcode:1920RSPTA.220..291D. doi:10.1098/rsta.1920.0009.
- ^ Kennefick, Daniel (1 March 2009). "Testing relativity from the 1919 eclipse – a question of bias". Physics Today. 62 (3): 37–42. Bibcode:2009PhT....62c..37K. doi:10.1063/1.3099578.
- ^ Kaiser, David (November 6, 2015). "Opinion | How Politics Shaped General Relativity". The New York Times. ISSN 0362-4331. Retrieved August 26, 2024.
- ^ Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) (in German): 966–972. Bibcode:1921SPAW.......966K.
- ^ Pais, Abraham (2000). "Chapter 7: Oskar Klein". The Genius of Science: A Portrait Gallery of Twentieth-Century Physicists. New York: Oxford University Press. ISBN 0-19-850614-7.
- ^ Friedman, Alexander (December 1922). "Über die Krümmung des Raumes". Zeitschrift für Physik (in German). 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID 125190902. Translated in: Friedmann, Alexander (December 1999). "On the Curvature of Space". General Relativity and Gravitation. 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID 122950995.
- ^ Marzlin, Karl-Peter (1994). "The physical meaning of Fermi coordinates". General Relativity and Gravitation. 26 (6): 619–636. arXiv:gr-qc/9402010. Bibcode:1994GReGr..26..619M. doi:10.1007/BF02108003. S2CID 17918026.
- ^ Segrè, Gino; Hoerlin, Bettina (2016). "Chapter 4: Student Days". The Pope of Physics. Henry Holt and Co. p. 27. ISBN 978-1-627-79005-5.
- ^ a b Hitchin, N. J. (2006). "Arthur Geoffrey Walker. 17 July 1909 -- 31 March 2001: Elected FRS 1955". Biographical Memoirs of Fellows of the Royal Society. 52: 413–421. doi:10.1098/rsbm.2006.0028.
- ^ Eddington, A. S. (1924). "On the relation between the masses and luminosities of the stars". Monthly Notices of the Royal Astronomical Society. 84 (5): 308–333. Bibcode:1924MNRAS..84..308E. doi:10.1093/mnras/84.5.308.
- ^ Lanczos, Cornelius (1924). "Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie" [On a static cosmology in the sense of Einstein's theory of gravity]. Zeitschrift für Physik (in German). 21 (1): 73–110. Bibcode:1924ZPhy...21...73L. doi:10.1007/BF01328251.
- ^ van Stuckum, Willem Jacob (1938). "The gravitational field of a distribution of particles rotating around an axis of symmetry". Proceedings of the Royal Society of Edinburgh. 57: 135–154. doi:10.1017/S0370164600013699.
- ^ Adams, W. S. (1925). "The Relativity Displacement of the Spectral Lines in the Companion of Sirius". Proceedings of the National Academy of Sciences. 11 (7): 382–387. Bibcode:1925PNAS...11..382A. doi:10.1073/pnas.11.7.382. PMC 1086032. PMID 16587023.
- ^ "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
- ^ Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences. 15 (3): 168–173. Bibcode:1929PNAS...15..168H. doi:10.1073/pnas.15.3.168. PMC 522427. PMID 16577160. Archived from the original on 1 October 2006. Retrieved 28 November 2019.
- ^ Huchra, J.; et al. (1985). "2237 + 0305: A new and unusual gravitational lens". Astronomical Journal. 90: 691–696. Bibcode:1985AJ.....90..691H. doi:10.1086/113777.
- ^ Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710. S2CID 119906976.
- ^ Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal. 74: 81–82. Bibcode:1931ApJ....74...81C. doi:10.1086/143324.
- ^ "Obituary: Georges Lemaitre". Physics Today. 19 (9): 119–121. September 1966. doi:10.1063/1.3048455.
- ^ Lemaître, Georges; Eddington, Stanley (March 1931). "The Expanding Universe". Monthly Notices of the Royal Astronomical Society. 91 (5): 490–501. doi:10.1093/mnras/91.5.490.
- ^ Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
- ^ Einstein; and De Sitter (1932). "On the relation between the expansion and the mean density of the universe". Proceedings of the National Academy of Sciences. 18 (3): 213–214. Bibcode:1932PNAS...18..213E. doi:10.1073/pnas.18.3.213. PMC 1076193. PMID 16587663.
- ^ Cockcroft, John; Walton, Ernest (April 1932). "Disintegration of Lithium by Swift Protons". Nature. 129 (649): 649. Bibcode:1932Natur.129..649C. doi:10.1038/129649a0.
- ^ Poffenberger, Leah; Levine, Alaina G. (April 2019). Voss, David (ed.). "April 14, 1932: Cockcroft and Walton Split the Atom". This Month in History. APS News. 28 (4). American Physical Society (APS).
- ^ D. I., Blokhintsev; F. M., Gal'perin (1934). "Гипотеза нейтрино и закон сохранения энергии" [Neutrino hypothesis and conservation of energy]. Pod Znamenem Marxisma (in Russian). 6: 147–157. ISBN 978-5-04-008956-7.
- ^ Farmelo, Graham (2009). The Strangest Man : The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber. pp. 367–368. ISBN 978-0-571-22278-0.
- ^ Debnath, Lokenath (2013). "A short biography of Paul A. M. Dirac and historical development of Dirac delta function". International Journal of Mathematical Education in Science and Technology. 44 (8): 1201–1223. Bibcode:2013IJMES..44.1201D. doi:10.1080/0020739X.2013.770091. ISSN 0020-739X.
- ^ Baade, Walter; Zwicky, Fritz (1934). "Remarks on Super-novae and Cosmic Rays" (PDF). Physical Review. 46 (1): 76–77. Bibcode:1934PhRv...46...76B. doi:10.1103/PHYSREV.46.76.2.
- ^ McCormick, Katie (July 18, 2023). "Ultracold Gases Can Probe Neutron Star Guts". Scientific American. Archived from the original on July 31, 2023. Retrieved July 31, 2023.
- ^ A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935).
- ^ Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science. 84 (2188): 506–507. Bibcode:1936Sci....84..506E. doi:10.1126/science.84.2188.506. PMID 17769014.
- ^ F. Zwicky (1937). "Nebulae as Gravitational lenses" (PDF). Physical Review. 51 (4): 290. Bibcode:1937PhRv...51..290Z. doi:10.1103/PhysRev.51.290. Archived (PDF) from the original on 2013-12-26.
- ^ Einstein, Albert & Rosen, Nathan (1937). "On Gravitational waves". Journal of the Franklin Institute. 223: 43–54. Bibcode:1937FrInJ.223...43E. doi:10.1016/S0016-0032(37)90583-0.
- ^ Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics. 39 (1): 65–100. doi:10.2307/1968714. JSTOR 1968714.
- ^ Lee, S.; Brown, G. E. (2007). "Hans Albrecht Bethe. 2 July 1906 — 6 March 2005: Elected ForMemRS 1957". Biographical Memoirs of Fellows of the Royal Society. 53: 1. doi:10.1098/rsbm.2007.0018.
- ^ Tolman, Richard C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review. 55 (364): 364–373. Bibcode:1939PhRv...55..364T. doi:10.1103/PhysRev.55.364.
- ^ a b c d Pais, Abraham; Crease, Robert (2006). J. Robert Oppenheimer: A Life. Oxford University Press. pp. 31–2. ISBN 978-0-195-32712-0.
- ^ Oppenheimer, J.R.; Serber, Robert (1938). "On the Stability of Stellar Neutron Cores". Physical Review. 54 (7): 540. Bibcode:1938PhRv...54..540O. doi:10.1103/PhysRev.54.540.
- ^ Oppenheimer, J.R.; Volkoff, G.M. (1939). "On Massive Neutron Cores" (PDF). Physical Review. 55 (4): 374–381. Bibcode:1939PhRv...55..374O. doi:10.1103/PhysRev.55.374. Archived (PDF) from the original on January 16, 2014. Retrieved January 15, 2014.
- ^ Oppenheimer, J.R.; Snyder, H. (1939). "On Continued Gravitational Contraction". Physical Review. 56 (5): 455–459. Bibcode:1939PhRv...56..455O. doi:10.1103/PhysRev.56.455.
- ^ Bartels, Megan (July 21, 2023). "Oppenheimer Almost Discovered Black Holes Before He Became 'Destroyer of Worlds'". Scientific American. Retrieved July 26, 2023.
- ^ Alpher, R. A.; Herman, R. C. (1948). "On the Relative Abundance of the Elements". Physical Review. 74 (12): 1737–1742. Bibcode:1948PhRv...74.1737A. doi:10.1103/PhysRev.74.1737.
- ^ Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe". Nature. 162 (4124): 774–775. Bibcode:1948Natur.162..774A. doi:10.1038/162774b0. S2CID 4113488.
- ^ Lanczos, Cornelius (1949-07-01). "Lagrangian Multiplier and Riemannian Spaces". Reviews of Modern Physics. 21 (3). American Physical Society (APS): 497–502. Bibcode:1949RvMP...21..497L. doi:10.1103/revmodphys.21.497. ISSN 0034-6861.
- ^ Gödel, K., "An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation", Rev. Mod. Phys. 21, 447, published July 1, 1949.
- ^ Gupta, Suraj N. (1952). "Quantization of Einstein's Gravitational Field: General Treatment". Proceedings of the Physical Society. Series A. 65 (8): 608–619. Bibcode:1952PPSA...65..608G. doi:10.1088/0370-1298/65/8/304.
- ^ Deser, Stanley (1970). "Self-interaction and gauge invariance". General Relativity and Gravitation. 1 (1): 9–18. arXiv:gr-qc/0411023. Bibcode:1970GReGr...1....9D. doi:10.1007/BF00759198. S2CID 14295121.
- ^ a b c d e Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
- ^ Kraichnan (1955). "Special-Relativistic Derivation of Generally Covariant Gravitation Theory". Physical Review. 98 (4): 1118–1122. Bibcode:1955PhRv...98.1118K. doi:10.1103/PhysRev.98.1118.
- ^ Kraichnan (1956). "Possibility of unequal gravitational and inertial masses". Physical Review. 101 (1): 482–488. Bibcode:1956PhRv..101..482K. doi:10.1103/PhysRev.101.482.
- ^ Bertotti, B. (1956-10-01). "On gravitational motion". Il Nuovo Cimento. 4 (4): 898–906. Bibcode:1956NCim....4..898B. doi:10.1007/BF02746175. ISSN 1827-6121. S2CID 120443098.
- ^ Dewitt, Cécile M.; Rickles, Dean (1957). An Expanded Version of the Remarks by R.P. Feynman on the Reality of Gravitational Waves. EOS – Sources. Wright-Patterson Air Force Base. ISBN 9783945561294. Retrieved 27 September 2016.
- ^ Finkelstein, David (1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". Physical Review. 110 (4): 965–967. Bibcode:1958PhRv..110..965F. doi:10.1103/PhysRev.110.965.
- ^ Pound, Robert; Rebka, Glen (1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (439): 439–441. Bibcode:1959PhRvL...3..439P. doi:10.1103/PhysRevLett.3.439.
- ^ Kruskal, Martin (1960). "Maximal Extension of Schwarzschild Metric". Physical Review Letters. 119 (1743): 1743–1745. Bibcode:1960PhRv..119.1743K. doi:10.1103/PhysRev.119.1743.
- ^ Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society. 64: 261–284. arXiv:1707.00139. doi:10.1098/rsbm.2017.0022. ISSN 0080-4606. S2CID 67365148.
- ^ Graves, John C.; Brill, Dieter R. (1960). "Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole". Physical Review Letters. 120 (4): 1507–1513. Bibcode:1960PhRv..120.1507G. doi:10.1103/PhysRev.120.1507.
- ^ Robinson, Ivor; Trautman, A. (1960). "Spherical Gravitational Waves". Physical Review Letters. 4 (8). Cdsads.u-strasbg.fr: 431. Bibcode:1960PhRvL...4..431R. doi:10.1103/PhysRevLett.4.431. Retrieved 2012-07-20.
- ^ Pound, Robert; Rebka, Glen (1960). "Apparent Weight of Photons". Physical Review Letters. 4 (337): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337.
- ^ Tullio E. Regge (1961). "General relativity without coordinates". Nuovo Cimento. 19 (3): 558–571. Bibcode:1961NCim...19..558R. doi:10.1007/BF02733251. S2CID 120696638. Available (subscribers only) at Il Nuovo Cimento
- ^ Bran, Carl; Dicke, Robert (1961). "Mach's Principle and a Relativistic Theory of Gravitation". Physical Review Letters. 124 (925): 925–935. Bibcode:1961PhRv..124..925B. doi:10.1103/PhysRev.124.925.
- ^ Roll, P.G; Krotkov, R; Dicke, R.H (1964). "The equivalence of inertial and passive gravitational mass". Annals of Physics. 26 (3). Elsevier BV: 442–517. Bibcode:1964AnPhy..26..442R. doi:10.1016/0003-4916(64)90259-3. ISSN 0003-4916.
- ^ Dicke, Robert H. (December 1961). "The Eötvös Experiment". Scientific American. 205 (6): 84–95. Bibcode:1961SciAm.205f..84D. doi:10.1038/scientificamerican1261-84.
- ^ Wheeler, John; Fuller, Robert (1962). "Causality and Multiply Connected Space-Time". Physical Review Letters. 128 (919): 919–929. Bibcode:1962PhRv..128..919F. doi:10.1103/PhysRev.128.919.
- ^ Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation. 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. S2CID 122155922.; originally published in Acta Phys. Pol. 22, 13–23 (1962).
- ^ Kerr, Roy P. (1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". Physical Review Letters. 11 (5): 237–238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237.
- ^ Penrose, Roger (1963). "Asymptotic Properties of Fields and Space-Times". Physical Review Letters. 10 (66): 66–68. Bibcode:1963PhRvL..10...66P. doi:10.1103/PhysRevLett.10.66.
- ^ Weinberg, Steven (1964). "Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix". Physics Letters. 9 (4): 357–359. Bibcode:1964PhL.....9..357W. doi:10.1016/0031-9163(64)90396-8.
- ^ Weinberg, Steven (1964). "Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass". Physical Review. 135 (4B): B1049 – B1056. Bibcode:1964PhRv..135.1049W. doi:10.1103/PhysRev.135.B1049.
- ^ Chandrasekhar, Subrahmanyan (1964). "Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity". Physical Review Letters. 12 (4): 114–116. Bibcode:1964PhRvL..12..114C. doi:10.1103/PhysRevLett.12.114.
- ^ Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today. 17 (5): 21–34. Bibcode:1964PhT....17e..21C. doi:10.1063/1.3051610.
So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
- ^ Refsdal, Sjur (1964). "On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect". Monthly Notices of the Royal Astronomical Society. 128 (4): 307–310. doi:10.1093/mnras/128.4.307.
- ^ Irwin I. Shapiro (1964). "Fourth Test of General Relativity". Physical Review Letters. 13 (26): 789–791. Bibcode:1964PhRvL..13..789S. doi:10.1103/PhysRevLett.13.789.
- ^ "Haystack marks physics milestone". MIT News. July 14, 2005. Retrieved May 2, 2023.
- ^ Penrose, Roger (1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (57): 57–59. Bibcode:1965PhRvL..14...57P. doi:10.1103/PhysRevLett.14.57.
- ^ Newman, Ezra; Janis, Allen (1965). "Note on the Kerr Spinning-Particle Metric". Journal of Mathematical Physics. 6 (6): 915–917. Bibcode:1965JMP.....6..915N. doi:10.1063/1.1704350.
- ^ Newman, Ezra; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. (1965). "Metric of a Rotating, Charged Mass". Journal of Mathematical Physics. 6 (6): 918–919. Bibcode:1965JMP.....6..918N. doi:10.1063/1.1704351.
- ^ Penzias, A.A.; Wilson, R.W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal. 142: 419–421. Bibcode:1965ApJ...142..419P. doi:10.1086/148307.
- ^ Bartusiak, Marcia (2015). "Chapter 9: Why Don't You Call It A Black Hole?". Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9.
- ^ a b Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American.
- ^ Deutsch, David; Isham, Christopher; Vilkovisky, Gregory (2005). "Bryce Seligman DeWitt". Physics Today. 58 (3): 84. Bibcode:2005PhT....58c..84D. doi:10.1063/1.1897570.
- ^ Israel, Werner (1967). "Event Horizons in Static Vacuum Space-Times". Phys. Rev. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776.
- ^ Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review. 174 (5): 1559–1571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559.
- ^ Hartle, James B.; Thorne, Kip S. (1968). "Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars". The Astrophysical Journal. 153: 807. Bibcode:1968ApJ...153..807H. doi:10.1086/149707.
- ^ Irwin I. Shapiro; Gordon H. Pettengill; Michael E. Ash; Melvin L. Stone; et al. (1968). "Fourth Test of General Relativity: Preliminary Results". Physical Review Letters. 20 (22): 1265–1269. Bibcode:1968PhRvL..20.1265S. doi:10.1103/PhysRevLett.20.1265.
- ^ Nordvedt, Kennet (1968). "Equivalence Principle for Massive Bodies. II. Theory". Physical Review Letters. 169 (1017): 1017–1025. Bibcode:1968PhRv..169.1017N. doi:10.1103/PhysRev.169.1017.
- ^ Bonnor, William B. (1969). "The Gravitational Field of Light" (PDF). Communications in Mathematical Physics. 13 (3): 163–174. Bibcode:1969CMaPh..13..163B. doi:10.1007/BF01645484. S2CID 123398946.
- ^ "Making Waves". TERP. 2016-08-18. Retrieved 2016-11-07.
- ^ Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science.
- ^ David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
- ^ Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento. Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
- ^ Choquet-Bruhat, Yvonne; Geroch, Robert (1969). "Global aspects of the Cauchy problem in general relativity". Communications in Mathematical Physics. 14 (4): 329–335. Bibcode:1969CMaPh..14..329C. doi:10.1007/BF01645389. S2CID 121522405.
- ^ Chandrasekhar, S. (1965). "The post-Newtonian equations of hydrodynamics in General Relativity". The Astrophysical Journal. 142: 1488. Bibcode:1965ApJ...142.1488C. doi:10.1086/148432.
- ^ Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal. 147: 334. Bibcode:1967ApJ...147..334C. doi:10.1086/149003.
- ^ Chandrasekhar, S. (1969). "Conservation laws in general relativity and in the post-Newtonian approximations". The Astrophysical Journal. 158: 45. Bibcode:1969ApJ...158...45C. doi:10.1086/150170.
- ^ Chandrasekhar, S.; Nutku, Y. (1969). "The second post-Newtonian equations of hydrodynamics in General Relativity". Relativistic Astrophysics. 86: 55. Bibcode:1969ApJ...158...55C. doi:10.1086/150171.
- ^ Chandrasekhar, S.; Esposito, F.P. (1970). "The 2½-post-Newtonian equations of hydrodynamics and radiation reaction in General Relativity". The Astrophysical Journal. 160: 153. Bibcode:1970ApJ...160..153C. doi:10.1086/150414.
- ^ Hawking, Stephen W.; Ellis, George F. R. (April 1968). "The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe". The Astrophysical Journal. 152: 25. Bibcode:1968ApJ...152...25H. doi:10.1086/149520.
- ^ Hawking, Stephen W.; Penrose, Roger (27 January 1970). "The Singularities of Gravitational Collapse and Cosmology". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 314 (1519): 529–548. Bibcode:1970RSPSA.314..529H. doi:10.1098/rspa.1970.0021.
- ^ Goldhaber, Alfred; Nieto, Michael (1971). "Terrestrial and Extraterrestrial Limits on The Photon Mass". Reviews of Modern Physics. 43 (3). American Physical Society: 277–296. Bibcode:1971RvMP...43..277G. doi:10.1103/RevModPhys.43.277.
- ^ Jackson, John David (1999). "Section I.2: Inverse Square Law or Mass of the Photon". Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. pp. 5–9. ISBN 0-471-30932-X.
- ^ Hawking, Stephen (October 1971). "Black Holes in General Relativity". Communications in Mathematical Physics. 25 (2): 152–166. doi:10.1007/BF01877517. S2CID 121527613.
- ^ Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID 120254309.
- ^ Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
- ^ Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains" (PDF). Science. 177 (4044): 166–168. Bibcode:1972Sci...177..166H. doi:10.1126/science.177.4044.166. PMID 17779917. S2CID 10067969.
- ^ Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains" (PDF). Science. 177 (4044): 168–170. Bibcode:1972Sci...177..168H. doi:10.1126/science.177.4044.168. PMID 17779918. S2CID 37376002.
- ^ Wick, Gerald (February 3, 1972). "The clock paradox resolved". New Scientist: 261–263.
- ^ Teukolsky, Saul (1972). "Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations" (PDF). Physical Review Letters. 29 (16): 1114–1118. Bibcode:1972PhRvL..29.1114T. doi:10.1103/PhysRevLett.29.1114. S2CID 122083437.
- ^ Bardeen, John M.; Carter, Brandon; Hawking, Stephen (June 1973). "The four laws of black hole mechanics" (PDF). Communications in Mathematical Physics. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007/BF01645742. S2CID 54690354.
- ^ Bardeen, James M. (1973). "Timelike and null geodesics in the Kerr metric". Proceedings, École d'Été de Physique Théorique: Les Astres Occlus: Les Houches, France, August, 1972: 215–240. Bibcode:1973blho.conf..215B. ISBN 9780677156101.
- ^ Overbye, Dennis (July 3, 2022). "James Bardeen, an Expert on Unraveling Einstein's Equations, Dies at 83". The New York Times. Archived from the original on July 3, 2022. Retrieved May 8, 2023.
- ^ Kaiser, David (2012). "A Tale of Two Textooks". Isis. 103 (1). University of Chicago Press: 126–138. doi:10.1086/664983. hdl:1721.1/82907. PMID 22655343.
- ^ Dahn, Ryan (March 10, 2023). "Gravitation's attraction, 50 years later". Physics Today. Retrieved July 31, 2023.
- ^ H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161.
- ^ Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.
- ^ Hawking, Stephen (March 1, 1974). "Black Hole Explosions?". Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. S2CID 4290107.
- ^ Hawking, Stephen (1975). "Particle Creation by Black Holes". Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID 55539246.
- ^ Collela, Roberto; Overhauser, Albert; Werner, Samuel (1975). "Observation of Gravitationally Induced Quantum Interference". Physical Review Letters. 34 (1472): 1472–1474. Bibcode:1975PhRvL..34.1472C. doi:10.1103/PhysRevLett.34.1472.
- ^ Staudenmann, J. -L.; Collela, Roberto; Werner, Samuel; Overhauser, Albert (1980). "Gravity and Inertia in Quantum Mechanics". Physical Review A. 21 (1419): 1419–1438. Bibcode:1980PhRvA..21.1419S. doi:10.1103/PhysRevA.21.1419.
- ^ Abele, Hartmut; Leeb, Helmut (2012). "Gravitation and quantum interference experiments with neutrons". New Journal of Physics. 14 (5): 055010. arXiv:1207.2953. Bibcode:2012NJPh...14e5010A. doi:10.1088/1367-2630/14/5/055010. ISSN 1367-2630. S2CID 53653704.
- ^ Townsend, John S. (2012). "Section 8.7: Quantum Interference due to Gravity". A Modern Approach to Quantum Mechanics (2nd ed.). University Science Books. pp. 297–99. ISBN 978-1-891389-78-8.
- ^ Chandrasekhar, S.; Detweiler, S. (1975). "The quasi-normal modes of the Schwarzchild black hole". Proc. R. Soc. Lond. A. 344 (1639): 441–452. Bibcode:1975RSPSA.344..441C. doi:10.1098/rspa.1975.0112.
- ^ D.Walsh; R.F.Carswell; R.J.Weymann (31 May 1979). "0957 + 561 A, B: twin quasistellar objects or gravitational lens?" (PDF). Nature. 279 (5712): 381–384. Bibcode:1979Natur.279..381W. doi:10.1038/279381a0. PMID 16068158. S2CID 2142707.
- ^ Luminet, Jean-Pierre (1979). "Image of a spherical black hole with thin accretion disk". Astronomy and Astrophysics. 75 (1–2): 228–235. Bibcode:1979A&A....75..228L.
- ^ "First ever image of a black hole: a CNRS researcher had simulated it as early as 1979". Espace presse. CNRS. April 10, 2019. Retrieved May 24, 2023.
- ^ Detweiler, Steven L. (1979). "Pulsar timing measurements and the search for gravitational waves". Astrophys. J. 234: 1100. Bibcode:1979ApJ...234.1100D. doi:10.1086/157593.
- ^ Schoen, Robert; Yau, Shing-Tung (1979). "On the proof of the positive mass conjecture in general relativity". Communications in Mathematical Physics. 65 (1): 45. Bibcode:1979CMaPh..65...45S. doi:10.1007/BF01940959. S2CID 54217085.
- ^ Schoen, Robert; Yau, Shing-Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics. 79 (2): 231. Bibcode:1981CMaPh..79..231S. doi:10.1007/BF01942062. S2CID 59473203.
- ^ Witten, Edward (1981). "A new proof of the positive energy theorem". Communications in Mathematical Physics. 80 (3): 381–402. Bibcode:1981CMaPh..80..381W. doi:10.1007/BF01208277. S2CID 1035111.
- ^ Rubin, Vera; et al. (June 1980). "Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". Astrophysical Journal. 238: 471–487. Bibcode:1980ApJ...238..471R. doi:10.1086/158003.
- ^ Nemiroff, Robert; Bonnell, Jerry (April 5, 2023). "Rubin's Galaxy". Astronomy Picture of the Day. NASA. Retrieved April 18, 2023.
- ^ Vessot, R. F. C.; et al. (1980). "Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser" (PDF). Physical Review Letters. 45 (26): 2081–2084. Bibcode:1980PhRvL..45.2081V. doi:10.1103/PhysRevLett.45.2081.
- ^ Bardeen, James M. (1980). "Gauge-invariant cosmological perturbations" (PDF). Physical Review D. 22 (8): 1882–1905. Bibcode:1980PhRvD..22.1882B. doi:10.1103/PhysRevD.22.1882.
- ^ Guth, Alan (15 January 1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Physical Review D. 23 (2): 347–356. Bibcode:1981PhRvD..23..347G. doi:10.1103/PhysRevD.23.347.
- ^ Taylor, J. H.; Weisberg, J. M. (1982). "A new test of general relativity – Gravitational radiation and the binary pulsar PSR 1913+16". Astrophysical Journal. 253: 908–920. Bibcode:1982ApJ...253..908T. doi:10.1086/159690.
- ^ Hartle, J.; Hawking, S. (1983). "Wave function of the Universe". Physical Review D. 28 (12): 2960. Bibcode:1983PhRvD..28.2960H. doi:10.1103/PhysRevD.28.2960. S2CID 121947045.
- ^ Friedrich, Helmut (1986). "On the existence of -geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics. 107 (4): 587–609. Bibcode:1986CMaPh.107..587F. doi:10.1007/BF01205488. S2CID 121761845.
- ^ a b c Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. Retrieved January 6, 2023.
- ^ Schultz, Bernard (1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl:11858/00-001M-0000-0013-73C1-2. S2CID 4327285.
- ^ Morris, Mike; Thorne, Kip; Yurtsever, Ulvi (1986). "Wormholes, Time Machines, and the Weak Energy Condition". Physical Review Letters. 61 (1446): 1446–1449. doi:10.1103/PhysRevLett.61.1446. PMID 10038800.
- ^ Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi:10.1119/1.15620.
- ^ Weinberg, Steven (1989). "The Cosmological Constant Problem". Physical Review Letters. 61 (1): 1–23. Bibcode:1989RvMP...61....1W. doi:10.1103/RevModPhys.61.1. hdl:2152/61094. S2CID 122259372.
- ^ Smoot, G. F.; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters. 396 (1): L1 – L5. Bibcode:1992ApJ...396L...1S. doi:10.1086/186504. S2CID 120701913.
- ^ Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters. 464: L1 – L4. arXiv:astro-ph/9601067. Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID 18144842.
- ^ Hawking, Stephen (1992). "Chronology Protection Conjecture". Physical Review D. 46 (603): 603–611. Bibcode:1992PhRvD..46..603H. doi:10.1103/PhysRevD.46.603. PMID 10014972.
- ^ Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN 0-691-08777-6.
- ^ Donoghue, John F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Physical Review D. 50 (3874): 3874–3888. arXiv:gr-qc/9405057. Bibcode:1994PhRvD..50.3874D. doi:10.1103/PhysRevD.50.3874. PMID 10018030. S2CID 14352660.
- ^ Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D. 73 (10): 104029. arXiv:hep-th/0409156. doi:10.1103/PhysRevD.73.104029. S2CID 54188791.
- ^ "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. Retrieved January 12, 2009.
- ^ "A Bull's Eye for MERLIN and the Hubble". University of Manchester. 27 March 1998.
- ^ Browne, Malcolm W. (1998-03-31). "'Einstein Ring' Caused by Space Warping Is Found". The New York Times. Retrieved 2010-05-01.
- ^ Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal. 116 (3): 1009–1038. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID 15640044.
- ^ Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J. (1999). "Measurements of Omega and Lambda from 42 High-Redshift Supernovae". The Astrophysical Journal. 517 (2): 565–586. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221. S2CID 118910636.
- ^ Buonanno, A.; Damour, T. (1999-03-08). "Effective one-body approach to general relativistic two-body dynamics". Physical Review D. 59 (8). American Physical Society (APS): 084006. arXiv:gr-qc/9811091. Bibcode:1999PhRvD..59h4006B. doi:10.1103/physrevd.59.084006. ISSN 0556-2821. S2CID 14951569.
- ^ Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016-06-07). "GW150914: First results from the search for binary black hole coalescence with Advanced LIGO". Physical Review D. 93 (12): 122003. arXiv:1602.03839. Bibcode:2016PhRvD..93l2003A. doi:10.1103/physrevd.93.122003. ISSN 2470-0010. PMC 7430253. PMID 32818163. S2CID 217628912.
- ^ Borde, Arvind; Guth, Alan H.; Vilenkin, Alexander (15 April 2003). "Inflationary space-times are incomplete in past directions". Physical Review Letters. 90 (15): 151301. arXiv:gr-qc/0110012. Bibcode:2003PhRvL..90o1301B. doi:10.1103/PhysRevLett.90.151301. PMID 12732026. S2CID 46902994.
- ^ Perlov, Delia; Vilenkin, Alexander (7 August 2017). Cosmology for the Curious. Cham, Switzerland: Springer. pp. 330–31. ISBN 978-3319570402.
- ^ Williams, James G.; Turyshev, Slava G.; Boggs, Dale H. (2004). "Progress in Lunar Laser Ranging Tests of Relativistic Gravity". Physical Review Letters. 93 (261101): 261101. arXiv:gr-qc/0411113. Bibcode:2004PhRvL..93z1101W. doi:10.1103/PhysRevLett.93.261101. PMID 15697965. S2CID 33664768.
- ^ Holz, Daniel; Hughes, Scott (2005). "Using Gravitational-Wave Standard Sirens". Astrophysical Journal. 629 (1): 15–22. arXiv:astro-ph/0504616. Bibcode:2005ApJ...629...15H. doi:10.1086/431341. hdl:1721.1/101190. S2CID 12017349.
- ^ Everitt, C.W.F.; Parkinson, B.W. (2009). "Gravity Probe B Science Results—NASA Final Report" (PDF). Retrieved 2 May 2009.
- ^ Everitt; et al. (2011). "Gravity Probe B: Final Results of a Space Experiment to Test General Relativity". Physical Review Letters. 106 (22): 221101. arXiv:1105.3456. Bibcode:2011PhRvL.106v1101E. doi:10.1103/PhysRevLett.106.221101. PMID 21702590. S2CID 11878715.
- ^ Chou, C. W.; Hume, D. B.; Rosenband, T.; Wineland, D. J. (2010). "Optical Clocks and Relativity". Science. 329 (5999): 1630–1633. Bibcode:2010Sci...329.1630C. doi:10.1126/science.1192720. PMID 20929843. S2CID 206527813.
- ^ Matson, John (September 23, 2010). "How Time Flies: Ultraprecise Clock Rates Vary with Tiny Differences in Speed and Elevation". Scientific American. Archived from the original on September 26, 2010.
- ^ Bennett, C. L.; et al. (2011). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?". Astrophysical Journal Supplement Series. 192 (2): 17. arXiv:1001.4758. Bibcode:2011ApJS..192...17B. doi:10.1088/0067-0049/192/2/17. S2CID 53521938.
- ^ "Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe". NASA. September 25, 2012. Retrieved September 26, 2012.
- ^ "NASA's NuSTAR Helps Solve Riddle of Black Hole Spin". NASA. 27 February 2013. Retrieved 3 March 2013. This article incorporates text from this source, which is in the public domain.
- ^ LIGO-VIRGO Collaboration (2016). "Tests of general relativity with GW150914". Physical Review Letters. 116 (22): 22110. arXiv:1602.03841. Bibcode:2016PhRvL.116v1101A. doi:10.1103/PhysRevLett.116.221101. PMID 27314708. S2CID 217275338.
- ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:1606.04855. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID 27367379. S2CID 118651851.
- ^ Naeye, Robert (11 February 2016). "Gravitational Wave Detection Heralds New Era of Science". Sky and Telescope. Retrieved 11 February 2016.
- ^ Pretorius, Frans (May 31, 2016). "Relativity Gets Thorough Vetting from LIGO". Physics. Vol. 9, no. 52. American Physical Society. Retrieved May 12, 2023.
- ^ Chu, Jennifer (June 15, 2016). "For second time, LIGO detects gravitational waves". MIT News. Retrieved June 16, 2016.
- ^ a b Abbott, B. P.; et al. (October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225. S2CID 217163611.
- ^ a b Goldstein, A.; et al. (October 2017). "An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A". Astrophysical Review Letters. 848 (2): L14. arXiv:1710.05446. Bibcode:2017ApJ...848L..14G. doi:10.3847/2041-8213/aa8f41. S2CID 89613132.
- ^ Savchenko, V.; et al. (October 2017). "INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817". Astrophysical Review Letters. 848 (2): L15. arXiv:1710.05449. Bibcode:2017ApJ...848L..15S. doi:10.3847/2041-8213/aa8f94. S2CID 54078722.
- ^ Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (2017). "Gravitational waves and gamma-rays from a binary neutron star merger: GW 170817 and GRB 170817A". The Astrophysical Journal Letters. 848 (2): L13. arXiv:1710.05834. Bibcode:2017ApJ...848L..13A. doi:10.3847/2041-8213/aa920c.
- ^ Abbott, B. P.; et al. (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger". The Astrophysical Journal Letters. 848 (2). L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9. S2CID 217162243.
- ^ McLaughlin, Maura (October 16, 2017). "Neutron Star Merger Seen and Heard". Physics. Vol. 10, no. 114. American Physical Society. Retrieved May 12, 2023.
- ^ Cho A (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. doi:10.1126/science.aar2149.
- ^ Landau E, Chou F, Washington D, Porter M (16 October 2017). "NASA missions catch first light from a gravitational-wave event". NASA. Retrieved 16 October 2017.
- ^ Johnson, Jennifer (2019). "Populating the periodic table: Nucleosynthesis of the elements". Science. 363 (6426): 474–478. Bibcode:2019Sci...363..474J. doi:10.1126/science.aau9540. PMID 30705182. S2CID 59565697.
- ^ Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (October 25, 2021). "The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers". Astrophysical Review Letters. 920 (1): L3. arXiv:2107.02714. Bibcode:2021ApJ...920L...3C. doi:10.3847/2041-8213/ac26c6. S2CID 238198587.
- ^ Watson, Darach; et al. (2019). "Identification of strontium in the merger of two neutron stars". Nature. 574 (7779): 497–500. arXiv:1910.10510. Bibcode:2019Natur.574..497W. doi:10.1038/s41586-019-1676-3. PMID 31645733. S2CID 204837882.
- ^ Curtis, Sanjana (January 2023). "How Star Collisions Forge the Universe's Heaviest Elements". Scientific American. 328 (1): 30–7. doi:10.1038/scientificamerican0123-30. PMID 39017105.
- ^ Touboul, Pierre; et al. (8 December 2017). "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle". Physical Review Letters. 119 (23). 231101. arXiv:1712.01176. Bibcode:2017PhRvL.119w1101T. doi:10.1103/PhysRevLett.119.231101. PMID 29286705. S2CID 6211162.
- ^ MICROSCOPE Collaboration (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters. 129 (12): 121102. arXiv:2209.15487. Bibcode:2022PhRvL.129l1102T. doi:10.1103/PhysRevLett.129.121102. PMID 36179190. S2CID 252468544.
- ^ Brax, Philippe (September 14, 2022). "Satellite Confirms the Principle of Falling". Physics. 15 (94). American Physical Society (APS): 94. Bibcode:2022PhyOJ..15...94B. doi:10.1103/Physics.15.94. S2CID 252801272.
- ^ Tino, G. M.; et al. (2017). "Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states". Nature Communications. 8 (15529): 15529. arXiv:1704.02296. Bibcode:2017NatCo...815529R. doi:10.1038/ncomms15529. PMC 5461482. PMID 28569742.
- ^ LIGO-VIRGO Collaboration; 1M2H Collaboration; et al. (2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (November 2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.
- ^ Chen HY, Fishbach M, Holz DE (October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203.
- ^ Akrami, Y.; et al. (Planck Collaboration) (2020). "Planck 2018 results. I. Overview, and the comological legacy of Planck". Astronomy & Astrophysics. 641: A1. arXiv:1807.06205. Bibcode:2020A&A...641A...1P. doi:10.1051/0004-6361/201833880. S2CID 119185252.
- ^ Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine. Retrieved 29 March 2020.
- ^ GRAVITY Collaboration (July 26, 2018). "Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole⋆". Astronomy and Astrophysics. 615 (L15). arXiv:1807.09409. doi:10.1051/0004-6361/201833718.
- ^ GRAVITY Collaboration (October 31, 2018). "Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*⋆". Astronomy and Astrophysics. 618 (L10). arXiv:1810.12641. doi:10.1051/0004-6361/201834294.
- ^ Advanced LIGO-VIRGO Collaboration (2018). "GW170817: Measurements of Neutron Star Radii and Equation of State". Physical Review Letters. 121 (161101): 161101. arXiv:1805.11581. Bibcode:2018PhRvL.121p1101A. doi:10.1103/PhysRevLett.121.161101. PMID 30387654. S2CID 53235598.
- ^ Sokol, Joshua (June 5, 2018). "Gravitational Waves Reveal the Hearts of Neutron Stars". Scientific American. 1 (3): None. doi:10.1038/scientificamericanspace0818-11.
- ^ Rezzolla, L.; Most, E. R.; Weih, L. R. (2018). "Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars". Astrophysical Journal. 852 (2): L25. arXiv:1711.00314. Bibcode:2018ApJ...852L..25R. doi:10.3847/2041-8213/aaa401. S2CID 119359694.
- ^ Pardo, Kris; Fishbach, Maya; Holz, Daniel E.; Spergel, David N. (2018). "Limits on the number of spacetime dimensions from GW170817". Journal of Cosmology and Astroparticle Physics. 2018 (7): 048. arXiv:1801.08160. Bibcode:2018JCAP...07..048P. doi:10.1088/1475-7516/2018/07/048. S2CID 119197181.
- ^ Lerner, Louise (September 13, 2018). "Gravitational waves provide dose of reality about extra dimensions". UChicago News. Retrieved January 3, 2023.
- ^ Lombriser L, Lima N (2017). "Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure". Phys. Lett. B. 765: 382–385. arXiv:1602.07670. Bibcode:2017PhLB..765..382L. doi:10.1016/j.physletb.2016.12.048. S2CID 118486016.
- ^ Bettoni D, Ezquiaga JM, Hinterbichler K, Zumalacárregui M (14 April 2017). "Speed of gravitational waves and the fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv:1608.01982. Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010. S2CID 119186001.
- ^ Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (December 2017). "Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A". Physical Review Letters. 119 (25): 251301. arXiv:1710.06394. Bibcode:2017PhRvL.119y1301B. doi:10.1103/PhysRevLett.119.251301. PMID 29303333. S2CID 36160359.
- ^ LIGO-VIRGO Collaboration (2018). "Tests of General Relativity with GW170817". Physical Review Letters. 123 (1): 011102. arXiv:1811.00364. doi:10.1103/PhysRevLett.123.011102. PMID 31386391. S2CID 119214541.
- ^ Creminelli P, Vernizzi F (December 2017). "Dark Energy after GW170817 and GRB170817A". Physical Review Letters. 119 (25): 251302. arXiv:1710.05877. Bibcode:2017PhRvL.119y1302C. doi:10.1103/PhysRevLett.119.251302. PMID 29303308. S2CID 206304918.
- ^ Boran S, Desai S, Kahya E, Woodard R (2018). "GW 170817 falsifies dark matter emulators". Phys. Rev. D. 97 (4): 041501. arXiv:1710.06168. Bibcode:2018PhRvD..97d1501B. doi:10.1103/PhysRevD.97.041501. S2CID 119468128.
- ^ Ezquiaga JM, Zumalacárregui M (December 2017). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv:1710.05901. Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304. PMID 29303304. S2CID 38618360.
- ^ Sakstein J, Jain B (December 2017). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters. 119 (25): 251303. arXiv:1710.05893. Bibcode:2017PhRvL.119y1303S. doi:10.1103/PhysRevLett.119.251303. PMID 29303345. S2CID 39068360.
- ^ Kitching, Thomas (December 12, 2017). "How crashing neutron stars killed off some of our best ideas about what 'dark energy' is". The Conversation. Retrieved January 5, 2023.
- ^ Li, Qing; et al. (2018). "Measurements of the gravitational constant using two independent methods". Nature. 560 (7720): 582–588. Bibcode:2018Natur.560..582L. doi:10.1038/s41586-018-0431-5. PMID 30158607. S2CID 256770086.
- ^ Schlamminger, Stephan (August 29, 2018). "Gravity measured with record precision". Nature. 560 (7720): 562–563. Bibcode:2018Natur.560..562S. doi:10.1038/d41586-018-06028-6. PMID 30158612.
- ^ Temming, Maria (August 29, 2018). "The strength of gravity has been measured to new precision". Science News. Retrieved August 3, 2023.
- ^ Event Horizon Telescope Collaboration (April 10, 2019). "First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole". Astrophysical Review Letters. 875 (1): L6. arXiv:1906.11243. Bibcode:2019ApJ...875L...6E. doi:10.3847/2041-8213/ab1141. S2CID 145969867.
- ^ Landau, Elizabeth (April 10, 2019). "Black Hole Image Makes History". Jet Propulsion Laboratory, California Institute of Technology. Retrieved May 17, 2023.
- ^ Event Horizon Telescope Collaboration (January 2024). "The persistent shadow of the supermassive black hole of M*87". Astronomy & Astrophysics. 681 (A79): A79. doi:10.1051/0004-6361/202347932. hdl:11584/406606.
- ^ Staff (2020). "GW190814 Factsheet: Lowest mass ratio to date: Strongest evidence of higher order modes" (PDF). LIGO. Retrieved 26 June 2020.
- ^ Abbott, R.; et al. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters. 896 (2): L44. arXiv:2006.12611. Bibcode:2020ApJ...896L..44A. doi:10.3847/2041-8213/ab960f.
- ^ Asenbaum, Peter; Overstreet, Chris; Kim, Minjeong; Curti, Joseph; Kasevich, Mark A. (2020). "Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level". Physical Review Letters. 125 (19): 191101. arXiv:2005.11624. Bibcode:2020PhRvL.125s1101A. doi:10.1103/PhysRevLett.125.191101. PMID 33216577. S2CID 218869931.
- ^ Conover, Emily (October 28, 2020). "Galileo's famous gravity experiment holds up, even with individual atoms". Science News. Retrieved August 6, 2023.
- ^ GRAVITY Collaboration (April 16, 2020). "Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole". Astronomy and Astrophysics. 636 (L5). arXiv:2004.07187. doi:10.1051/0004-6361/202037813.
- ^ Bothwell, Tobias; Kennedy, Colin J.; Aeppli, Alexander; Kedar, Dhruv; Robinson, John M.; Oelker, Eric; Staron, Alexander; Ye, Jun (2022). "Resolving the gravitational redshift across a millimetre-scale atomic sample" (PDF). Nature. 602 (7897): 420–424. arXiv:2109.12238. Bibcode:2022Natur.602..420B. doi:10.1038/s41586-021-04349-7. PMID 35173346. S2CID 237940816.
- ^ McCormick, Katie (2021-10-25). "An Ultra-Precise Clock Shows How to Link the Quantum World With Gravity". Quanta Magazine. Retrieved 2021-10-29.
- ^ Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VII. Polarization of the Ring". Astrophysical Journal Letters. 910 (1): L12. arXiv:2105.01169. Bibcode:2021ApJ...910L..12E. doi:10.3847/2041-8213/abe71d. S2CID 233715159.
- ^ Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon". Astrophysical Journal Letters. 910 (1): L13. arXiv:2105.01173. Bibcode:2021ApJ...910L..13E. doi:10.3847/2041-8213/abe4de. S2CID 233659565.
- ^ Bower, Geoffrey C. (May 2022). "Focus on First Sgr A* Results from the Event Horizon Telescope". The Astrophysical Journal. Retrieved May 12, 2022.
- ^ Overbye, Dennis (May 12, 2022). "The Milky Way's Black Hole Comes to Light". The New York Times. ISSN 0362-4331. Retrieved May 12, 2022.
- ^ Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way". Astrophysical Journal Letters. 930 (2): L12. Bibcode:2022ApJ...930L..12E. doi:10.3847/2041-8213/ac6674. hdl:10261/278882. S2CID 248744791.
- ^ Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric". Astrophysical Journal Letters. 930 (2): L17. Bibcode:2022ApJ...930L..17E. doi:10.3847/2041-8213/ac6756. hdl:10261/279267. S2CID 248744741.
- ^ Fletcher, Seth (September 2022). "Portrait of a Black Hole". Scientific American: 48–53. Archived from the original on September 25, 2022.
- ^ Overstreet, Chris; Asenbaum, Peter; Curti, Joseph; Kim, Minjeong; Kasevich, Mark A. (January 14, 2022). "Observation of a gravitational Aharonov-Bohm effect". Science. 375 (6577): 226–229. Bibcode:2022Sci...375..226O. doi:10.1126/science.abl7152. ISSN 0036-8075. PMID 35025635. S2CID 245932980.
- ^ Seigel, Ethan (January 18, 2022). "Has a new experiment just proven the quantum nature of gravity?". Big Think. Retrieved August 5, 2023.
- ^ Conover, Emily (January 13, 2022). "Quantum particles can feel the influence of gravitational fields they never touch". Science News. Retrieved August 5, 2023.
- ^ Hohensee, Michael A.; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger (June 7, 2012). "Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment". Physical Review Letters. 108 (23): 230404. arXiv:1109.4887. Bibcode:2012PhRvL.108w0404H. doi:10.1103/PhysRevLett.108.230404. ISSN 0031-9007. PMID 23003927. S2CID 22378148.
- ^ Ehrenstein, David (June 7, 2012). "The Gravitational Aharonov-Bohm Effect". Physics. 5: s87. Bibcode:2012PhyOJ...5S..87.. doi:10.1103/Physics.5.s87.
- ^ Garner, Rob (July 12, 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Retrieved January 2, 2023.
- ^ Dichiara, S.; Gropp, J. D.; Kennea, J. A.; Kuin, N. P. M.; Lien, A. Y.; Marshall, F. E.; Tohuvavohu, A.; Williams, M. A.; Neil Gehrels Swift Observatory Team (2022). "Swift J1913.1+1946 a new bright hard X-ray and optical transient". The Astronomer's Telegram. 15650: 1. Bibcode:2022ATel15650....1D.
- ^ Plait, Phil (January 2023). "The Brightest Gamma-Ray Burst Ever Recorded Rattled Earth's Atmosphere". Scientific American: 56–7.
- ^ Reddy, Francis (13 October 2022). "NASA's Swift, Fermi Missions Detect Exceptional Cosmic Blast". NASA's Goddard Space Flight Center.
- ^ Adams, N.J.; et al. (January 2023). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society. 518 (3): 4755–4766. arXiv:2207.11217. doi:10.1093/mnras/stac3347. Retrieved 2 January 2023.
- ^ Yan, Haojing; et al. (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters. 942 (L9): 20. arXiv:2207.11558. Bibcode:2023ApJ...942L...9Y. doi:10.3847/2041-8213/aca80c.
- ^ Nightingale, James W.; et al. (May 2023). "Abell 1201: detection of an ultramassive black hole in a strong gravitational lens". Monthly Notices of the Royal Astronomical Society. 521 (3): 3298–332. arXiv:2303.15514. doi:10.1093/mnras/stad587.
- ^ "NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources". NuSTAR. Retrieved 2023-04-24.
- ^ Bachetti, Matteo; et al. (October 2022). "Orbital decay in M82 X-2". The Astrophysical Journal. 937 (2): 125. arXiv:2112.00339. Bibcode:2022ApJ...937..125B. doi:10.3847/1538-4357/ac8d67. S2CID 251903552.
- ^ Zhang, S.-B.; Ba, Z.-L.; Ning, D.-H.; Zhai, N.-F.; Lu, Z.-T.; Sheng, D. (2023). "Search for Spin-Dependent Gravitational Interactions at Earth Range". Physical Review Letters. 130 (20): 201401. arXiv:2303.10352. Bibcode:2023PhRvL.130t1401Z. doi:10.1103/PhysRevLett.130.201401. PMID 37267553. S2CID 257631794.
- ^ Kimball, Derek F. Jackson (May 15, 2023). "Testing Gravity's Effect on Quantum Spins". Physics. Vol. 16, no. 80. American Physical Society (APS). Retrieved May 17, 2023.
- ^ Agazie, Gabriella; et al. (June 29, 2023). "The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background". The Astrophysical Journal Letters. 951 (L8): L8. arXiv:2306.16213. Bibcode:2023ApJ...951L...8A. doi:10.3847/2041-8213/acdac6. S2CID 259274684.
- ^ Antoniadis, J.; et al. (June 28, 2023). "The second data release from the European Pulsar Timing Array". Astronomy & Astrophysics. 678: A50. arXiv:2306.16214. doi:10.1051/0004-6361/202346844. S2CID 259274756.
- ^ Reardon, Daniel J.; et al. (June 29, 2023). "Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array". The Astrophysical Journal Letters. 951 (1): L6. arXiv:2306.16215. Bibcode:2023ApJ...951L...6R. doi:10.3847/2041-8213/acdd02. S2CID 259275121.
- ^ Xu, Heng; et al. (2023). "Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I". Research in Astronomy and Astrophysics. 23 (7): 075024. arXiv:2306.16216. Bibcode:2023RAA....23g5024X. doi:10.1088/1674-4527/acdfa5. S2CID 259274998.
- ^ Castelvecchi, Davide (June 29, 2023). "Monster gravitational waves spotted for first time". Nature. Retrieved June 29, 2023.
- ^ Lewis, Geraint F.; Brewer, Brendon J. (2023). "Detection of the cosmological time dilation of high-redshift quasars". Nature Astronomy. 7 (10): 1265–1269. arXiv:2306.04053. Bibcode:2023NatAs...7.1265L. doi:10.1038/s41550-023-02029-2. S2CID 259096065.
- ^ University of Sydney (July 3, 2023). "Quasar 'clocks' show Universe was five times slower soon after the Big Bang". Science Daily. Retrieved July 12, 2023.
- ^ The LHAASO Collaboration (August 15, 2024). "Stringent Tests of Lorentz Invariance Violation from LHAASO Observations of GRB 221009A". Physical Review Letters. 133 (7). arXiv:2402.06009. doi:10.1103/PhysRevLett.133.071501.
- ^ Stephens, Marric (August 15, 2024). "Gamma-Ray Burst Tightens Constraints on Quantum Gravity". Physics Today. American Physical Society (APS). Retrieved September 6, 2024.
External links
[edit]- Timeline of relativity and gravitation (Tomohiro Harada, Department of Physics, Rikkyo University)
- Timeline of General Relativity and Cosmology from 1905
- 2015–General Relativity's Centennial. Physical Review Journals. American Physical Society (APS).